
International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 1
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

A Survey on Splitting BPEL Processes to
BPEL4Chor Choreography for improving the

Business Process
Gowri D Choudhary, Prof. G B Jethava

Abstract---Many Companies applying BPEL to improve their business process by doing process modification. This paper illustrates how to
split from a BPEL process to BPEL4Chor choreography. First, the main BPEL process given is split into fragment BPEL processes, in a
way that the operational semantic of the main BPEL process is preserved in the collective behavior of the fragmented BPEL processes.
The dataflow dependencies of the given BPEL process are analyzed and reflected in the fragmented BPEL processes. Based on the
results of the splitting algorithm, BPEL4Chor choreography is generated: The fragmented BPEL processes are converted into participants
in the generated BPEL4Chor choreography.

 Index Terms---BPEL processes; WSDL; Process Fragmentation; and BPEL4Chor.

—————————— ——————————

1 INTRODUCTION

NOWADAYS globally integrated enterprises are
demanding more and more agility in the business. They
pursue the ways to reinvent the business process rapidly,
such as business process reengineering and continuous
improvement process (CIP). The enterprises that embrace
CIP improve their business process via modification of the
noncompetitive part. If improvement goal in the non-
competitive business cannot be reached, the out-sourcing or
off-shore of the business process will usually be carried out
in order to keep the company’s portfolio profitable. To
specify business process behavior based on Web services,
the Business Process Execution Language (BPEL) has been
introduced into industry in recent years. Companies
applying BPEL can improve their business process by
doing process modification. In the case of out-sourcing, the
non-competitive part will be cut-out. The part can be
regarded as a cut-out sub-process, which should be run by
the third party companies. This cut-out sub-process is
called “process fragment”[4]. The number of the process
fragments depends on how the original process is “cut”.
The challenge is how to do the process fragmentation so
that the collective behavior of the process fragments
preserve the operational semantic of the original process.

An approach is proposed in [8] to decompose the process.

In that approach, a BPEL process is firstly transformed into
an intermediate form i.e. BPEL-D process in [1] which the
data flow is represented by explicit data-links. Then the
control link and data link are split in the same way that
sending block and receiving block are created and the
control (true or false) and data (value) are passed by
messaging between the two blocks. At the end, the result is
a BPEL process per participant, the corresponding WSDL
definition per BPEL process, and a global wiring file.
Although the BPEL-D process presents the data flow
explicitly and can easily be split, it is not sufficient to split
the data dependency in a BPEL process while keeping the
operational semantic of that original process, due to the
parallelism and Death-Path-Elimination (DPE) in BPEL
process.

Therefore, a more BPEL compliant approach for splitting
data dependency of a BPEL process is introduced in [4].
The mechanism of splitting data dependency in that
approach differs from the explicit data-links in BPEL-D in a
way that the data dependencies across the BPEL process
fragments are maintained in an implicit manner.
BPEL4Chor provides the interconnected interface behavior
descriptions by utilizing the Abstract Process Profile for
Observable Behavior of BPEL and by adding an
interconnection layer on top of the abstract BPEL process.

————————————————
 Gowri D Choudhary is currently pursuing masters degree program in

Computer Science & Engineering in Parul Institute of Engineering &
Technology, India, E-mail: rgk.choudhary@gmail.com.

 G.B Jethava is currently professor in Information Technology Department
in Parul Institute of Engineering & Technology, India,
 E-mail: author_name@mail.com

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 2
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Figure 1.1: In- and Output of Splitting

The work in this paper is based on the above mentioned
approach. Nevertheless, we lack in [4] a specific definition
or description of the out-coming wiring file after the
process fragmentation. Thus, we choose BPEL4Chor as the
out-coming wiring specification. BPEL4Chor is a BPEL
extension for defining choreographies and is suitable for
the global wiring information. This paper aims to
demonstrate how one can go from a BPEL process to
BPEL4Chor choreography. In other words, we show how to
accept a BPEL process, its associated WSDL definition and
the partition specification as input, how to split the BPEL
process into process fragments, and eventually how to
output the corresponding BPEL4Chor artifacts. Figure 1.1
illustrates the input and output of the splitting process that
is the main focus in this paper.

Figure 1.2: Architecture of the Process Fragmentation.

Architecturally, the split module (Figure 1.2) functions as
an Eclipse Plug-in in the Eclipse BPEL designer. It takes a
BPEL, an associated WSDL, the provided partition
specification along with the data-flow analysis on that
BPEL process as input and outputs the BPEL4Chor as well
as split loop/scope information. The outputs can be
consumed by Choreography interpreter and CPS-
Coordinator in the workflow engine.

2 PROCESS FRAGMENTATIONS

Process fragmentation is the beginning of the splitting
procedure, therefore, it is the part where the input of the
split procedure is taken care of. After the input, a main
BPEL process is created, and it is about to be fragmented
into smaller ones upon the partition specification given.

2.1 Main Process Specification
The Figure 3.1 shows that one of the input for the splitting
procedure is a BPEL process, which one can call main BPEL
process or original BPEL process, since it will be split into
multiple smaller fragment processes. Input that is
associated to the BPEL process is the WSDL definition. For
the split, it provides the message type referred by variable
in BPEL process, the PortType referred by in-bound and
out-bound activity, and the PartnerLinkType referred by
PartnerLink

Figure 2.1: The Overview of the Split Module

in the BPEL process. The deployment information of the
main process is absent since it is not deployed in this paper,
it is split instead. Due to the complexity of supporting all
BPEL activities, there is a need to set up a subset so that the
task can be achieved in this paper.

2.2 Partition Specification
Partition specification is one part of the input for splitting
procedure besides the BPEL and WSDL. It informs the
splitting procedure which activity in the main process is
assigned to which participant. The participants together
constitute the partition of the BPEL process. The term
‘participant’ indicates a fragment of the main process, and

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 3
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

it has one or more activities in the main process. The main
idea is that one divides the activities in different sets, and
each set is regarded as a participant.

2.3 Creating WSDL Definitions
A WSDL definition will be created for each fragment
process. In this paper, generally, the WSDL definition’s
name attribute will be the same as the participant’s name.
Its targetNamespace attribute will come from the original
process’s WSDL definition. It is explained in [4] ,[6] and [8]
that (1) to support the inter-communications between the
fragment processes some new artifacts are created in their
WSDL definitions, and that (2) some artifacts are copied
from the WSDL definition of original process in the proper
fragment process to enable the communication between the
clients and the fragment processes.

2.4 Creating Fragment Processes
A fragment process will be created for each participant. The
newly created process is an empty process. In the run-time,
necessary artifacts will be copied into the fragment process.
What is copied into the fragment process depends on the
participant associated. The new fragment process will be
named after the participant. In this thesis, the algorithms in
[2] are adapted to handle the creation of the process
fragment. The function PROCESS_CHILD in that chapter is
the main algorithm to add activity in the fragment process.
The main idea is that given the main process, the
participant, and the fragment process, we iterate through
all activities in the main process in a top-down manner, in
each iteration an activity will be handled.

2.5 Collecting Information for BPEL4Chor
The ultimate aim of the splitting process in this paper is to
output the BPEL4Chor Choreography on the process upon
the partition specification given. The idea is to prepare the
output so that we collect the information pieces available in
each stage of the splitting procedure, store the them in
intermediate data, at the end assemble all pieces together
for output.
After Process Fragmentation, the information useful for
BPEL4Chor in the run-time is:
 1. Topology
 2. Grounding
 3. Control link fragmentation
 4. Data Dependency fragmentation

3 CONTROL LINK FRAGMENTATIONS

Fragmenting Control Link is to split the control link on the
base of whether or not the control link crosses over
processes given a specific partition specification. In the
former case the control flow is transmitted by exchanging
message between the processes. In the step 5 of the Figure
2.1, we can see that in this stage the control link is to be
fragmented. The results of step 4 (Process Fragmentation)
are taken as input, and “step 5 - fragmenting control link”
will be run, output of the procedure will be the modified
fragment processes, WSDL definitions, and BPEL4Chor
artifacts i.e. message links. In this paper, the details of
fragmenting control link will be explained.

3.1 Concept to Fragment Control Link
The concept is introduced as follows. Figure 3.1 illustrates
the concept of fragmenting control link. The non-split
process (left) contains two activities, a and b, with is
connected by a link l(a, b, q). The notion l(a, b, q) is used to
indicate the link from activity a to activity b with q, which is
a Boolean expression and can be omitted if it is not
specified. The activity a is placed in Participant 1 (right)
after the fragmentation, and the activity b in Participant 2
(right). Besides the placement of a and b, some constructs
are created in Participant 1 and 2.

Figure 3.1: Concept for Splitting Control Link across
Processes [2].

The original link l(a, b, q) is split across the participants. We
regard the newly created constructs in Participant 1 as
sending block, and the one in Participant 2 as receiving block.
The control is propagated from activity a to activity b, via
message exchange between sending block and receiving
block. The message encodes whether the control is in valid-
or faulty status. That way, the behavior of the original link
in the non-split process is reproduced in the fragment
processes.

3.2 Fragmenting Control Link in BPEL
In the last section, the conceptual fragmenting control link
is introduced. A simplified scenario where a control link
across processes is given, and the solution was that one re-
produces the control flow of the original link by creating
the sending block and receiving block each in the

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 4
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

corresponding fragment process. In this section we focus on
how one fragments the control link in BPEL. Consider a
more general scenario, where we get fragment processes by
splitting the main process with the help of partition
specification. The control links in the fragment processes
are still not handled. The question is how to apply the
concept for fragmenting control link on those control links
that are split, and how to handle the links that are not split.
We can handle the link by proposing the SPLIT-
CONTROL-LINK algorithm. It goes through all the
fragment processes and checks for each basic activity of the
current fragment process whether each of its outgoing
control links cross over processes. The procedure SPLIT-
CONTROL-LINK terminates after each fragment process
has been processed. It iterates in the following sequence: (1)
process (2) activity (3) source (4) link. Each iteration
consumes one outgoing link of an activity and the
corresponding incoming link that associated to another
activity. As a result, when the procedure is ended, all the
outgoing links and their associated incoming links are
processed.

4. DATA DEPENDENCY FRAGMENTATION

 In Figure 2.1, data dependency fragmentation (step 6) will
be executed after the control link fragmentation. Unlike the
BPEL-D method, the data dependency fragmentation in this
paper splits the data dependency in an implicit way. We
analyze the data-flow of the main process first. Then
against a (data) variable and its reader (activity), the
analysis result is able to tell us which writers the reader is
dependent on. Based on that knowledge we create the
construct in the fragment process that contains the writers
of the data and in the fragment process in which the reader
of the data presents. The local resolver is responsible for
summarizing the data from the various writers and sending
it to the receiving flow per message (in the case of the
writers and the reader being in different fragment
processes), while the receiving flow is responsible for
collecting the data sent by the local resolver, assembling
that data in its previous order, and eventually rerouting the
data to the reader.

The message, which is exchanged between the two sides,
contains not only the data but also the information of
whether the writers succeed. A Writer Dependency Graph
(WDG) is created in order to re-generate the control
dependency of the writers in the receiving flow and
therefore realize the ‘last writer wins’ policy. Then a
Partitioned Writer Dependency Graph (PWDG) based on

the WDG is created to reduce the quantity of those
exchanged messages.

4.1 Data-Flow Analysis of BPEL Process
One input of the algorithm for fragmenting data
dependency in this paper is the data-flow analysis of the
main BPEL process. It serves the purpose of determining
the data dependencies between activities. Such a concept
for data-flow analysis has been presented by Kopp et al. [5],
[3]. It has been extended by Breier [10] and implemented by
Gao [7]. To encode the data dependencies determined by
the data-flow analysis, we use the function that describes a
set of tuples.

5. RESULT OF BPEL4CHOR
CHOREOGRAPHY
After the fragmentation of the data dependency, one has
split the main process completely. The task at the end is to
transform the executable fragment BPEL processes into
Participant Behavior Descriptions (PBDs), and then output
them together with the participant topology and grounding
that have been prepared in the previous steps. This step is
emphasized in Figure 2.1.

5.1 Participant Behavior Description (PBD)
In this stage the fragment processes are executable BPEL
processes. a PBD is an abstract process profile. Therefore,
we need to transform each of the executable fragment
processes into an abstract process that meets the constraints
as follows:
1. Each communication activity contains a namespace wide
unique identifier.
2. The partnerLink, portType, and operation attributes in
communication activity are excluded.
3. If there is a pair of combined <receive> and <reply>, an
enforced messageExchange is created.

5.2 Participant Topology
The participant topology is the structure aspect of the
BPEL4Chor choreography. It consists of three main notions:
participantType, participant, and messageLink.

5.3 Participant Grounding
The participant grounding provides the web service
specific configuration for the choreography. The two main
notions are the messageLink and participantRef.

6 CONCLUSION AND FUTURE WORK

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 5
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

The main aim is to describe the concepts of splitting BPEL
to BPEL4Chor Choreography processes out of a plain BPEL
process. This paper provides a detailed description about
the concept to BPEL4Chor choreography instead of a set of
plain BPEL processes. Although the BPEL-D process
presents the data flow explicitly and can easily be split, it is
not sufficient to split the data dependency in a BPEL
process while keeping the operational semantic of that
original process, due to the parallelism and Death-Path-
Elimination (DPE) in BPEL process. Therefore, BPEL4Chor
splitting data dependency of a BPEL process is introduced.
We lack in a specific definition or description of the out-
coming wiring file after the process fragmentation in BPEL-
D. Thus, we choose BPEL4Chor as the out-coming wiring
specification. BPEL4Chor is a BPEL extension for defining
choreographies and is suitable for the global wiring
information. BPEL4Chor provides the interconnected
interface behavior descriptions by utilizing the Abstract
Process Profile for Observable Behavior of BPEL and by
adding an interconnection layer on top of the abstract BPEL
process.

In future, we are going to work on the implementing the
BPEL4Chor splitting algorithm and other related
algorithms. We are going to extend this work by
implementing all the steps that are described in this paper.

REFERENCES

1. R. Khalaf “Note on Syntactic Details of Split BPEL-

D Business Processes”. Technical Report Computer
Science 2007.

2. R. Khalaf “Supproting business process
fragmentation while maintaining operational
semantics : a BPEL perspective”.2008.

3. O. Kopp, R. Khalaf, F. Leymann, “Reaching
Definitions Analysis Respecting Dead Path
Elimination Semantics in BPEL Processes”. 2007

4. R. Khalaf, O. Kopp, F. Leymann. “Maintaining
Data Dependencies across BPEL Process
Fragments”. International Journal of Cooperative
Information

 Systems (IJCIS), 17(3):259–282,
 2008.

5. O. Kopp, R. Khalaf, F. Leymann. “Deriving Explicit
Data Links in WS-BPEL Processes”, In IEEE
International Conference on Services Computing.
IEEE, 2008.

6. W3C, “Web Services Description Language
(WSDL)”, 2001. URL http://www.w3.org/TR/wsdl.

7. Y. Gao, “Implementing the Dataflow Analyse for
WS-BPEL 2.0”. (2246):54, 2010.

8. R. Khalaf, F. Leymann “Role-based Decomposition
of Business Processes using BPEL”, in International
Conference on Web Services (ICWS 2006), pp. 770–
780. IEEE Computer Society, 2006.

9. S. Breier. “Extended Data-flow Analysis on BPEL
process “ 2008.

